# Automated synthesis of <sup>18</sup>F-labeled ligands for pre- and postsynaptic PET imaging of the dopaminergic system using IBA Synthera modules

V. Kramer<sup>1)</sup>, M. Piel<sup>2)</sup>, C. Elqueta<sup>1)</sup>, S. Höhnemann<sup>2)</sup>, A. Amaral<sup>1)</sup>, M. Avila<sup>1)</sup>, J. Ribbec<sup>1)</sup>, E. Perez<sup>3)</sup>, R. Pruzzo<sup>4)</sup>, P. Chana<sup>5)</sup>, C. Juri<sup>6)</sup>, F. Rösch<sup>2)</sup> and H. Amaral<sup>1,2)</sup> 1)Positronpharma S.A., Santiago, Chile; 2)Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz, Germany; 3)Instituto de química organica, Pontifica Universidad Catolica de Chile, Santiago, Chile <sup>4)</sup>Medicina Nuclear, Fundación Arturo Lopez Perez, Santiago, Chile; <sup>5)</sup>CETRAM Universidad de Santiago, Santiago, Chile <sup>6)</sup>Pontifica Universidad Católica de Chile, Santiago

#### Abstract

- Positron emission tomography for non invasive in vivo-diagnosis of DAT- and D<sub>2</sub>/D<sub>2</sub>-like receptor functions is considered to be a valuable tool for differential diagnosis and early detection of Parkinsons disease [1]
- The aromatic amino acid decarboxylase (AADC), dopamin transporters (DAT) and vesicular monoamine transporters (VMAT2) are valuable targets for preclinical detection of PD.
- Out of those, DAT seems to be the most sensitive target in early phases [1] (see Figure 1)

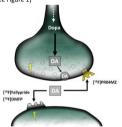
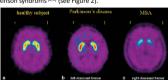




Figure 1: Dopaminergic synapse and radioligands for pre- and postsynaptic imaging.

 Postsynaptic D<sub>2</sub>/D<sub>3</sub>-receptor ligands like Fallypride or DMFP have been used successfully for receptor quantification, occupancy studies and for differential diagnosis of idiopathic and atypical narkinson syndroms [2,3] (see Figure 2)



- Figure 2: Differential diagnosis of parkinsonism with [18F]DMFP
- · Aim of this study was to provide a fully automated synthesis for routine application of <sup>18</sup>F-Fallypride, <sup>18</sup>F-DMFP and <sup>18</sup>F-PR04,MZ, a new selective and high affine DAT ligand for PET imaging, using the IBA Synthera platform.

#### **Materials & Methods**

- 18F-Fluoride was produced by 18O(p,n)18F-reaction (Cyclone 18/9) IBA) and transferred to a spare vial.
- 18F-PR04.M7.
  18F-Fallypride and 18F-DMFP were labeled by direct. nucleophilic fluorination of corresponding mesyl and tosyl precursors (see Figure 3)



Figure 3: Radiosynthesis of [18F]PR04.MZ, [18F]FP and [18F]DMFP

- Known labeling conditions from the literature were adapted to the IBA Synthera plattform<sup>[2,4]</sup>. The different reaction steps were optimized and saved in a script for automatic control.
- · Labeling precursors, consumables and IFPs were purchased from ABX and used without any modifications.
- For the labeling step, standard IFPs for FDG synthesis were used.
- · Purification was reached by HPLC, solid phase extraction and sterile filtration. For postprocessing standard IFPs for alkylation were used without any modifications. Experimental setup is



Figure 4: Experimental setup for labeling, purification and postprocessing.

 Depending on the radioligand, different consumables and
 Table 2: Typical activity distribution for a synthesis of [18FIDMFP] reaction conditions were used (see Table 1)

Table 1: Reaction and purification conditions:

|                           | PR04.MZ                                                | Fallypride                                            | DMFP                                                     |
|---------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
| Vial 1                    | 15 mg K222, 15<br>μmol K <sub>2</sub> CO <sub>3</sub>  | 15 mg K222, 15<br>μmol K <sub>2</sub> CO <sub>3</sub> | 15 mg K222, 15<br>μmol K <sub>2</sub> CO <sub>3</sub>    |
| Vial 2                    | 5 mg<br>Mesyl-PR04MZ                                   | 5 mg<br>Tosyl-FP                                      | 5 mg<br>Tosyl-DMFP                                       |
| Reaction-<br>temperature  | 88 "C                                                  | 88 "C                                                 | 88 "C                                                    |
| Reaction-time             | 10 min.                                                | 20 min.                                               | 20 min.                                                  |
| Vial 3                    | Water/MeCN<br>1:1                                      | Water/MeCN<br>1:1                                     | 10 % H <sub>3</sub> PO <sub>4</sub>                      |
| HPLC-solvent              | 4 mL/min<br>MeCN/Solvent A<br>60 : 40                  | 4 mL/min<br>MeCN/Solvent A<br>30 : 70                 | 4 mL/min<br>MeCN/Solvent A<br>30 : 70                    |
| HPLC-column               | Phenomenex<br>Luna C18 10 x<br>250 mm                  | Phenomenex<br>Luna C18 10 x<br>250 mm                 | Phenomenex<br>Luna C8 10 x<br>250 mm                     |
| Retention time<br>Product | 15.5 min                                               | 16 min                                                | 13.5 min                                                 |
| HPLC-dilution             | 45 mL water                                            | 45 mL water                                           | 45 mL 0.15 M<br>Na <sub>2</sub> HPO <sub>4</sub> -Buffer |
| Vial 4/5/6                | 2 mL water / 1 mL ethanol / 9 mL 0.9 % sodium chloride |                                                       |                                                          |

#### Results

- After labeling, crude product solution was successfully transferred to HPLC-loop using a 0.22 µm nylon filter.
- . Thereby about 15 % of activity was retained in the filter.
- The product retained on C18 cartrige after HPLC-purification was successfully eluted with 1 mL ethanol. Thereby around 10 % were still retained on cartrige (see table 2).
- [18F]PR04.MZ, [18F]Fallypride and [18F]DMFP were obtained as injectable solution (10 % ethanol in 0.9% sodium chloride.
- Full OC according to guidelines by European Pharmacopoeia was performed and passed and radiochemical purity was in the range of 96-98 % for all ligands.
- From starting activities of 9-35 GBq, [18F]PR04.MZ, [18F]Fallypride and [ $^{18}$ F]DMFP were obtained in high RCYs of 41 $\pm$ 7, 37 $\pm$ 9 and
- Total synthesis time for all ligands was in the range of 57-68 minutes and specific activities were in the range of 47-480 GBg/umol (mean: 110 GBg/umol).

|                 | Activity / mCi | Time | RCY / % (d.c.) |
|-----------------|----------------|------|----------------|
| Start synthesis | 364.0          | 0    | 100            |
| QMA             | 8.23           | 78   | 3.7            |
| Nylon filter    | 32.7           | 89   | 15.7           |
| Alumina N       | 0.6            | 90   | 0.3            |
| C18             | 25.3           | 79   | 11.4           |
| Steril filter   | 6.89           | 72   | 3.0            |
| Product         | 88.7           | 68   | 37.4           |

## **Summary & Outlook**

- · A fully automated synthesis of 3 different ligands for pre- and postsynaptic imaging of the dopaminergic system was established for the IBA Synthera platform.
- A new automated method for post-processing was developed using IFPs for alkylation.
- [18F]PR04.MZ, [18F]Fallypride and [18F]DMFP were obtained in high radiochemical yields and purities.
- · QC in accordance to guidelines made my the European Pharmacopoeia was passed for all ligands.
- The RCYs obtained on IBA Synthera modules by the described methods are high, but still lower than those published in the literature. Therefore especially loop-loading and elution of the C18 cartrige have to be optimized in the near future.
- · Specific activities obtained by this method are sufficient for clinical application and injected mass of tracer would be  $< 1 \mu g$ . Nevertheless there ist still a need for further optimization of the

### References

- [1] A J Stoessel et al. (2012), Transl. Neurodeg. 1:5
- [2] G Gründer et al. (2003), J. Nucl. Med. 44, 109-116
- [3] M Schreckenberger et al. (2004), Eur. J. Nucl. Med. 31, 1128-
- [4] PJ Riss, Dissertation (2008)

vkramer@positronpharma.cl

Positronpharma<sup>®</sup>