Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice F. Alves^a, V.H. Alves^a, A. Neves^a, S.J.C. do Carmo^a, B. Nactergal^b V. Hellas^b E. Kral^b, C. Gonçalves-Gameiro^b A.J. Abrunhosa^a ^aICNAS - Institute for Nuclear Science Applied to Health - University of Coimbra; Pólo III; 3000-548 Coimbra, Portugal ^bIBA; Chemin du Cyclotron 3; 1348 Louvain-la- Neuve; Belgium #### Introduction Gallium-68 (⁶⁸Ga) is of growing interest for the production of Ga-radiolabeled compounds used as tracer molecules in positron emission tomography (PET) imaging technique. To obtain ⁶⁸Ga, the most common technique is the use of a ⁶⁸Ge/⁶⁸Ga generator. Unfortunately, ⁶⁸Ge/⁶⁸Ga generators, with limited lifetime, produce limited amounts of ⁶⁸Ga per elution and present the risk of contaminating the final preparation with the long-lived parent nuclide ⁶⁸Ge. Traditionally, ⁶⁸Ga is also produced in cyclotrons via the ⁶⁸Zn(p,n)⁶⁸Ga reaction in a metal (solid) target. The process, although producing high yields, requires expensive solid target irradiation, transport and processing systems, poses radio-protection issues, and is prone to contamination by metallic ions that can compromise the purification of the ⁶⁸Ga and subsequent labeling reaction. Although the method has been implemented in several centers, it never became a widespread solution, probably due to these drawbacks. Alternative methods have been proposed to simplify and improve the process of ⁶⁸Ga production by a cyclotron, based on liquid targets [1] [2]. Recognizing the advantages of this concept, the authors developed an improved process for cyclotron irradiation of a ⁶⁸Zn target solution and subsequent purification in order to achieve a final solution of ⁶⁸Ga that can be used to label ⁶⁸Ga radiopharmaceuticals thus providing an economically viable alternative to ⁶⁸Ge/⁶⁸Ga generators. ## **Material and Methods** The different steps for the completion of a whole process to produce and separate ⁶⁸Ga from a liquid target have been studied and implemented in a fully integrated system. As target material, Zinc-68 (⁶⁸Zn) nitrate solution diluted in low concentrated nitric acid solution has proven to be the best compromise, allowing the use of convenient amounts of ⁶⁸Zn, stability (including non-precipitation) of the solution over long time and better behavior (namely pressure build up) under beam. A Nirta Conical® target system by IBA was used, benefiting from improved cooling capabilities, after confirming chemical inertness of constituent Niobium. A Niobium target window is also used. Target automatic filling system was implemented, based on peek valves and lines, thus avoiding metal contamination. Energy range to avoid ⁶⁷Ga production and under beam current-pressure conditions have been studied for different target material concentrations and conditioning. Synthera® Extension IBA commercial system was used to implement the separation process based on strong cation exchanger column, and a dedicated disposable cassette was developed. The implemented method includes previous elution of ⁶⁸Zn, that can therefore be reused, and a final elution (with hydrochloric acid) of produced ⁶⁸Ga with overall yield of 85%. The purification and recovery process takes place in 30 mins. Final ⁶⁸Ga was proven to be suitable for labelling radiopharmaceuticals for human use. #### **Results and Conclusion** A complete setup for 68 Ga production, separation and purification based on the irradiation of a 68 Zn highly enriched solution was implemented using an IBA target and a commercially available synthesis module. A minimum of 180 mCi of ⁶⁸Ga was systematically produced on a 40 min irradiation at 45 uA proton beam from a conventional IBA Cyclone 18 cyclotron, using 100 mg of ⁶⁸Zn in a total volume of 3 ml of nitric acid solution. The implemented system and methodology has a consistent 85% yield for the recovery/purification process. ⁶⁸Ga obtained has been used to label (with >70% yield) peptides, namely ⁶⁸Ga-DOTANOC and ⁶⁸Ga-PSMA-11, suitable for human use, with practical and economical gains compared with the conventional methods. ## References - 1. M.K. Pandey, J.F. Byrne, H. Jiang, A.B. Packard, T.R. DeGrado: *Am J Nucl Med Mol Imaging* **4 (4)**, pp. 303–310, 2014. - M. Jensen, J. Clark; Proceedings of the 13th International Workshop on Targetry and Target Chemistry, pp.288-289, 2011 ¹Corresponding author, E-mail: franciscoalves@uc.pt