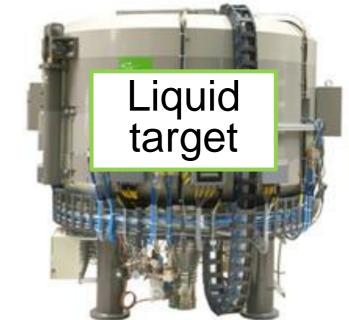
GMP Production of Gallium-68 from a Cyclotron Using Liquid Targets: Regulatory Aspects

C

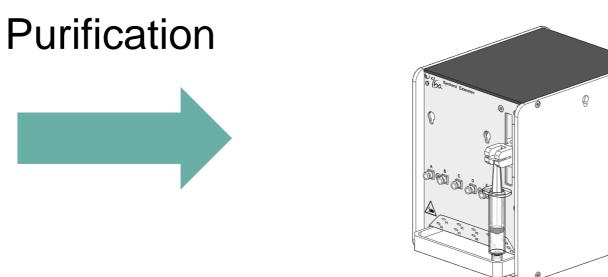
F. Alves, V. H. Alves, A. Neves, S. J. do Carmo and A. J. Abrunhosa

ICNAS, University of Coimbra, Portugal



Objectives

Considering the ever expanding use of gallium-68 (⁶⁸Ga) based radiopharmaceuticals in clinical applications worldwide, there is a growing interest in producing this nuclide in ways other than the traditional germanium-68/gallium-68 generator. Despite their widespread use and ease of operation, generators are limited in terms of their shelf-life, amount of [⁶⁸Ga]GaCl₃ per elution and time between elutions. Moreover the [⁶⁸Ga]GaCl₃ from the generator presents a serious risk of contamination of the final preparation with the long-lived parent nuclide: ⁶⁸Ge (half-life 271 days). Considering these limitations we recently proposed a fully automated process for the production of ⁶⁸Ga-radiopharmaceuticals based on the cyclotron irradiation of a zinc-68(⁶⁸Zn) target solution via (p,n) reaction followed by subsequent purification and labeling [1].


Materials/Methods

The process is fully based on commercially available modules and, because it uses liquid targets and a standard mid-energy cyclotron, it can easily be integrated into the routine of a typical PET production facility. Nevertheless, in order for the process to be fully GMP-compliant, some regulatory aspects need to be addressed.

EOB: End of Beam

IBA Cyclone®,18 MeV, 40 μA 68 Zn(p,n) 68 Ga

[68Ga]68GaCl₃ (Gallium-Chloride)

EOP: End of Purification

Labelling

[68Ga]-peptide Peptides: DOTA-NOC, PSMA, etc. EOS: End of Synthesis

Results

The existing ⁶⁸Ga Eur. monograph is based on the commercially available Ge-68/Ga-68 generator. The limit for radionuclidic impurities is properly very low specifically for ⁶⁸Ge impurity with a limit of 0.001%. There is no ⁶⁸Ge in Ga-68 produced by cyclotron but other impurities arise from the process mostly Ga-67 and Ga-66 mainly because of isotopic impurities in the target and the competing (p,2n) reaction on ⁶⁸Zn. ⁶⁷Ga citrate has been approved as a human drug years ago and its monograph specifies a limit of 0.2% for ⁶⁶Ga. Considering that both are isotopic impurities and share the same biodistribution as ⁶⁸Ga, the limits of <0.2% for ⁶⁷Ga and <2% for ⁶⁷Ga for the cyclotron produced Ga-68 solution are considered adequate and can be met over its full shelf-life.

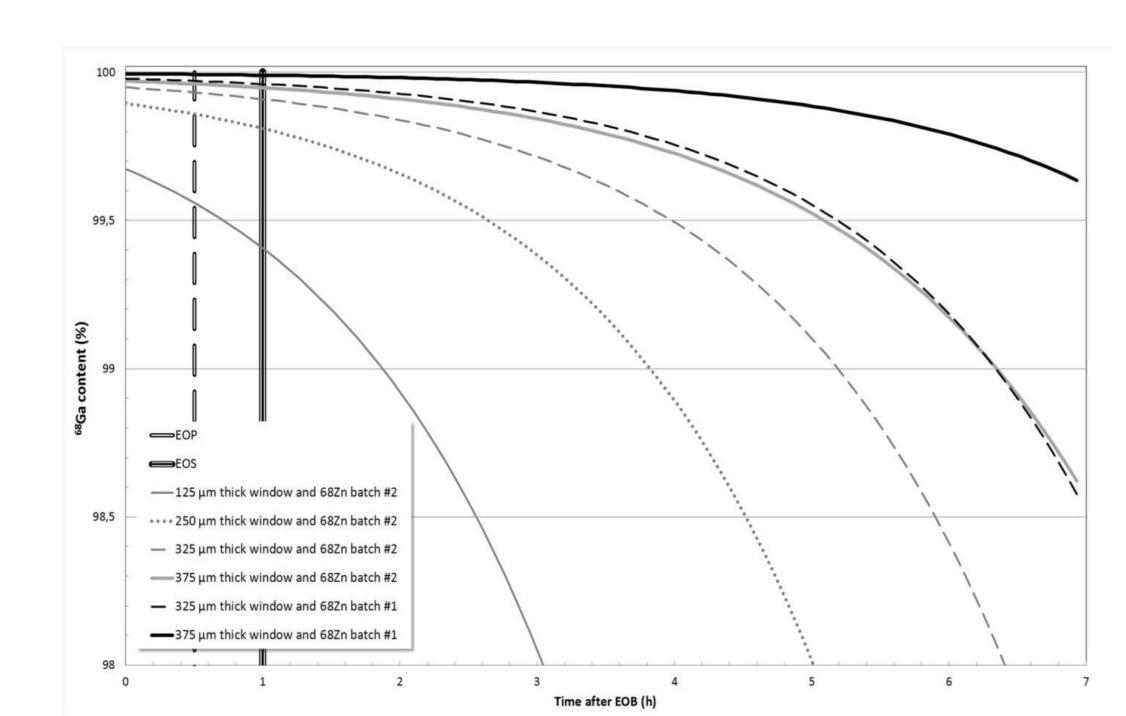


Fig.1:Theoretical predictions of the purity of the ⁶⁸Ga produced, as a function of time after EOB, for several target front windows of distinct thicknesses and two different batches of enriched ⁶⁸Zn.

		68(Ga	⁶⁷ Ga		⁶⁶ Ga	
		Theo.	Exp.	Theo.	Exp.	Theo.	Exp.
	T0 (EOP)	99,89	99,87	0,11	0,13	0,002	0,004
250 μm	T 1	99.79	99,76	0,20	0,23	0,003	0,008
thick	T2	99,62	99,56	0,37	0,43	0,005	0,010
Niobium	<u>T3</u>	99,31	99,20	0,68	0,78	0,008	0,020
Window	T4	98,74	98,54	1,25	1,42	0,014	0,040
	T5	97,72	97,35	2,26	2,58	0,023	0,060
	T0 (EOP)	99,97	99,95	0,030	0,041	0,001	0,004
325 μm	T1	99,94	99,92	0,055	0,075	0,002	0,008
thick	T2	99,90	99,82	0,10	0,14	0,004	0,010
Niobium	T3	99,81	99,68	0,18	0,25	0,006	0,022
Window	<u>T4</u>	99,65	99,42	0,34	0,46	0,010	0,040
	T5	99,37	98,94	0,62	0,84	0,018	0,065

Fig 2:Theoretical predictions and experimental measurements of the purity of the 68 Ga produced with time from End-Of-Purification (EOP), for target foil thicknesses of 250 μ m and 325 μ m

The purified ⁶⁸Ga obtained was also used to label DOTA-peptides, HBEB-peptides and other for human use, using a commercial synthesis module and disposable cassettes. As an example, ⁶⁸Ga-DOTANOC was obtained with 66.64±7.58 % DC in a 20 min process time, with very high radiochemical purity as shown by HPLC (Figure 3). The final product fulfils the specifications of the European Pharmacopeia ((⁶⁸Ga) Edotreotide Injection (Eur. Ph. monograph 01/2013 2482)) where applicable) as shown on Table 1. The final pH of the product is approximately 5, GC analysis showed no residual solvents apart from ethanol (<10% of final concentration) and sterility (by an independent laboratory) and apyrogenicity (gel-clot) tests were all negative.

Specification	Method	Acceptance criteria	Result
рН	Potentiometric	4.0 to 8.0	4.80 ± 0.08
Radionuclidic	Half-life	62 to 74 minutes	68.20 ± 0.28
purity	determination		
Radiochemica	HPLC & TLC	≥ 91%	98.77 ± 1.41
I purity			
Residual	TLC	≤ 0.2mg/10mL	< 0.2
HEPES			
Zinc	ABS UV/VIS	≤ 5ppm	≤ 5
Residual	GC-FID	≤ 50mg/10mL	0.77 ± 0.56
acetone			

Table I. Analytical HPLC of a final solution of 68Ga-DOTA-NOC (Rt: 2.5 min).

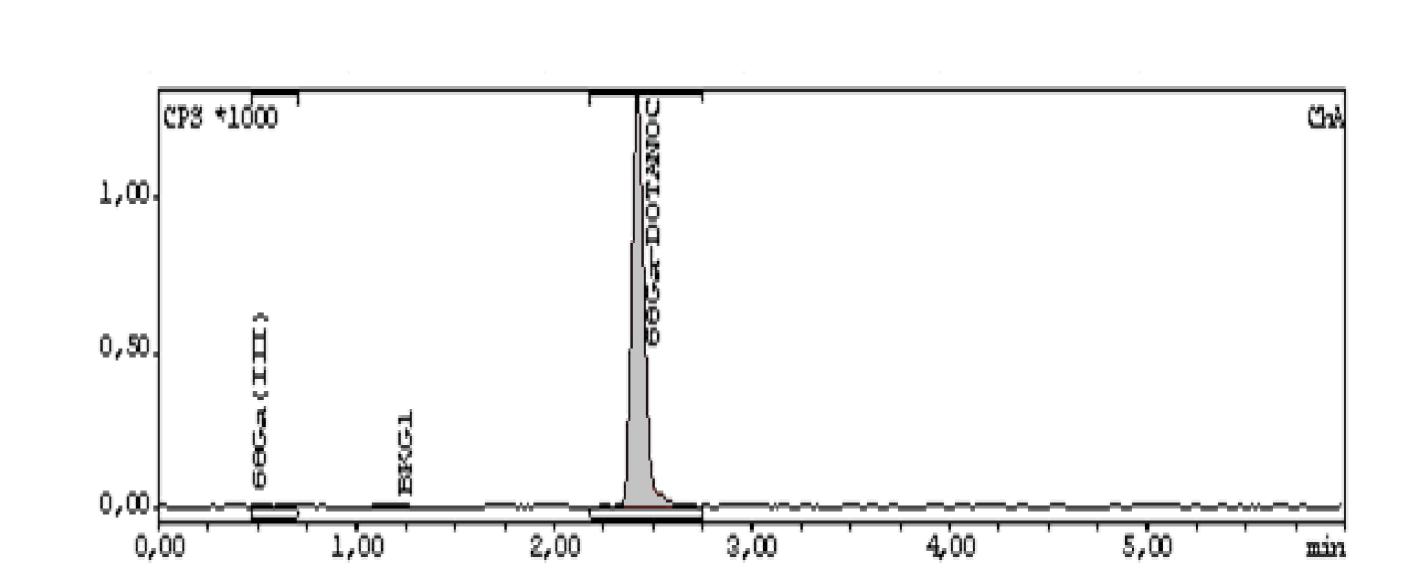


Fig3. Analytical HPLC of a final solution of 68Ga-DOTA-NOC (Rt: 2.5 min).

Conclusion

In summary, irradiation of liquid targets on a mid-energy cyclotron can readily produce a ⁶⁸Ga-solution that can be validated as a GMP process but monographs of the Pharmacopoeia should be adapted to include the specificities of the cyclotron process.

[1] Patent application: EP15170854