Automated radiosynthesis of the ¹⁸F-fluoropropylsulfonyl derivative of TAK875, a FFA1-binding PET radiotracer for β -cell mass imaging.

Dr. Mark H. Dornan^{1,2}, Prof. Vincent Poitout¹, Prof. Jean N. DaSilva^{1,2}

1. University of Montreal Hospital Research Centre (CRCHUM), Montréal, Canada; 2. Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada. 3. Université de Montréal, Faculty of Medicine - Montréal, Canada

Objectives Type 2 diabetes mellitus (T2D) is marked by a depletion of β -cell functional mass. As current understanding of β -cell dysfunction in T2D has largely come from post-mortem autopsy data, there is an unmet need for a non-invasive method to monitor β -cells. The fatty-acid receptor FFA1 is highly expressed in β -cells and is a promising target for pharmacological agents and radiotracers. Recently the synthesis of the ¹⁸F-fluoropropylsulfonyl derivative of the synthetic FFA1 agonist TAK875 has been reported [1]. This tracer has potential for quantitative *in vivo* imaging PET studies of β -cell functional mass. Herein, we report the fully automated radiosynthesis of the ¹⁸F-TAK875 derivative in high specific activity.

Methods An IBA Synthera® Chemistry synthesizer was programed to perform ¹⁸F-labeling of the tosylate precursor 1 followed by ester hydrolysis, purification and reformulation. [¹⁸F]Fluoride (IBA Cyclone® 18 MeV) was eluted with $K_{222}/K_2CO_3/acetonitrile$ from a QMA cartridge into the reactor. After azeotropic drying, the tosylate precursor 1 (3 mg) in acetonitrile was added and the reaction heated to 100 °C for 2.5 min. NaOH was added for hydrolysis. The solution was quenched and then purified with a C₁₈ cartridge and by HPLC. The fraction containing the radiotracer was transferred to a second Synthera® Chemistry synthesizer to perform cartridge-based reformulation.

Results The ¹⁸F-fluoropropylsulfonyl derivative of TAK875 was produced, purified and reformulated in the module in under 60 minutes with a RCY of 17.0 \pm 4.7 % (n = 3). Analytical HPLC revealed the radiochemical purity >98 % with a high specific activity of 163-322 GBq/µmol (4403 – 8706 mCi/µmol) at EOS. Stability, reactivity and optimization studies of the synthetic route are currently underway to reduce production of an elimination byproduct and to increase overall yield and chemical purity.

Conclusions An automated method for high purity and high specific activity radiochemical production of the ¹⁸F-TAK875 derivative has been developed using the Synthera® platform

Acknowledgements M.H.D. is supported by a MITACS accelerate grant. We thank the Radiochemistry staff of CRCHUM.

References [1] R. Bertrand et al. J. Label. Compd. Radiopharm. 2016, (In press).

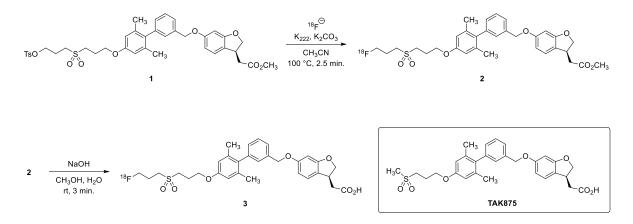


Figure 1. Radiosynthesis of the ¹⁸F-fluoropropylsulfonyl derivative of TAK875.