

CYCLONE® KIUBE

МАКСИМАЛЬНЫЕ ВОЗМОЖНОСТИ, МАКСИМАЛЬНЫЙ ПОТЕНЦИАЛ

RADIO PHARMA SOLUTIONS

КОМПАНИЯ ІВА СКОНЦЕНТРИРОВАЛА 30 ЛЕТ ОПЫТА И ИССЛЕДОВАНИЙ В **ЦИКЛОТРОНЕ CYCLONE® KIUBE**

Первое признание в мире

В 1986 году компания ІВА выпустила на рынок первый компактный циклотрон для промышленного производства радиоизотопов. Новый революционный дизайн позволил увеличить производительность в 15 раз и получил признание во всем мире. Спустя 30 лет компания ІВА в очередной раз творит историю, представляя новый циклотрон с мощностью 18МэВ -Cyclone® KIUBE. Этот более компактный и самый мощный циклотрон для ПЭТ разработан с обеспечением трех ключевых показателей, интересующих пользователей: Надежность, Высокая Производительность и Гибкость.

Широкая база установленных объектов

Сотрудничество с ІВА позволит вам оставаться на переднем плане научного прогресса и пользоваться преимуществами новых решений для производства радиофармпрепаратов. Более 250 циклотронов ІВА, установленных на 5 континентах, доказывает непревзойденный опыт компании и удовлетворенность заказчиков.

Экспертные знания компании ІВА помогают достичь мастерства и всестороннего понимания каждого

аспекта в области производства радиофармпрепаратов, благодаря чему мы можем предложить вам циклотроны с высокой степенью производительности и надежности.

Поддержка в течение всего срока службы вашего оборудования

ІВА обеспечивает постоянную поддержку в развитии ваших навыков и умений, в увеличении продолжительности работы вашего оборудования и максимизации доходов от ваших инвестиций, предлагая инновационные разработки, сервис и обучение. При необходимости всегда можно усовершенствовать и модернизировать конфигурации циклотронов ІВА, чтобы они продолжали соответствовать последнему слову техники.

> **150** патентов IBA

лет опыта

в области ускорителей частиц

ЗАКРЫВАЮЩЕЕ УСТРОЙСТВО ДЛЯ УПРОЩЕНИЯ ПРОЦЕССА ПРЕКРАЩЕНИЯ ЭКСПЛУАТАЦИИ ЕП200.199

КОНИЧЕСКАЯ МИШЕНЬ NIRTA® ДЛЯ УМЕНЬШЕНИЯ ИСПОЛЬЗОВАНИЯ ОБОГАЩЕННОЙ ВОДЫ ВОИС 2012/055970

1985

ЦИКЛОТРОН «DEEP VALLEY». РЕЗУЛЬТАТ В 5 РАЗ БОЛЬШЕ ПОТРЕБЛЕНИЕ ЭНЕРГИИ В З РАЗА МЕНЬШЕ ЕВРОПЕЙСКИЙ ПАТЕНТ (ЕП) №022786

МИШЕНЬ ИЗ НИОБИЯ NIRTA® УЛУЧШЕННОЕ КАЧЕСТВО ПОЛУЧАЕМОГО ФДГ 2003

ПРОИЗВОДИТЕЛЬНОСТИ

2005

ОБОРУДОВАНИЕ 150 МКА ДЛЯ УВЕЛИЧЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ

ДВОЙНОЙ ПРОТОННЫЙ ИСТОЧНИК ДЛЯ УВЕЛИЧЕНИЯ ПРОДОЛЖИТЕЛЬНОСТИ РАБОТЫ ОБОРУДОВАНИЯ ЕП2196073

СИСТЕМА КОНТРОЛЯ ZEPHIROS® ДЛЯ УДОБСТВА И ЛЕГКОСТИ использования **ЦИКЛОТРОНА** EП2581914

ЦИКЛОТРОН CYCLONE® KIUBE ЕП16169489. ЕП16169490 ЕП16169494. ЕП16169497 ЕП16171282

CYCLONE® KIUBE БУДЕТ МЕНЯТЬСЯ ВМЕСТЕ С ВАМИ, ДЛЯ ВАС

Способный эволюционировать, как ни один другой циклотрон

Cyclone® KIUBE — циклотрон, способный эволюционировать, а это значит, что его производительность можно наращивать пошагово – от 100 мкА до 150 мкА, 180 мкА и даже до 300 мкА!

Вложив изначально меньше средств и начав с Cyclone® KIUBE с энергией 100мкА, вы получите возможность увеличивать производительность вашего ПЭТ-центра с течением времени.

Бесконечно широкие возможности

Восемь выходных портов Cyclone® KIUBE делают его самым гибким в применении циклотроном, производящим широчайший набор РФП для ПЭТ. Эффективность без ограничений.

Полный спектр мишеней Nirta® даст возможность производства 18F, 13N, 150, 11C (CO2 и CH4), 18F2, 68Ga ...и т.д. Кроме того, ІВА предоставляет технологию твердотельных мишеней Nirta® для наработки таких новых изотопов, как 64Cu, 89Zr, 124I, 99mTc..

CYCLONE® KIUBE: МОДИФИКАЦИЯ С САМОЗАЩИТОЙ

100 мкА

150 мкА

ВОЗМОЖНОСТЬ УВЕЛИЧЕНИЯ

CYCLONE® KIUBE: БЕЗ САМОЗАШИТЫ

370 ГБк

100 мкА

150 мкА

180 мкА

16Ки* 20Ки* 30Ки* 1110 ГБк 300 мкА

ГАЙ БОРМАНС, профессор (Dr. Guy Bormans)

Начальник радиофармацевтического производства Лёвенский Католический Университет, Бельгия

Стандартный план производство РФП с использованием циклотрона IBA с 8

нуклид фармпрепарат

Другие РФП,

меченые Р

MK9470 Раклоприд

10*H₀0 PDE,A

выходными портами:

4 30-6 00

6.30-8.00

8.15-8.45 ¹¹C 10.00-12.00 ¹⁸F

12.30-13.00 ¹¹C

13.30-13.40 ¹³N 14.00-16.00 150

16.30-17.00 ¹¹C

¹⁸F

ВОЗМОЖНОСТЬ УВЕЛИЧЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ

(*) Активность ФДГ за 2х-часовой цикл

CYCLONE® KIUBE OБЕСПЕЧИВАЕТ ПРЕВОСХОДНЫЕ РЕЗУЛЬТАТЫ

Экономически эффективный

Опыт показал, что энергия протонов в 18 МэВ является оптимальной для получения наивысшей производительности при выпуске большинства изотопов для ПЭТ. Производственная мощность вашего центра будет увеличена и оптимизирована, как и ваш доход; а занимаемая площадь помещения будет разумного размера, как и ваши инвестиции. Из этого следует, что циклотроны с мощностью 18 МэВ являются наиболее экономически эффективным решением для вашей лаборатории по производству изотопов. Растущий спрос на радиоизотопы означает необходимость повышения эффективности оборудования. Cyclone® KIUBE более экономично использует обогащенную воду и расходует минимальное количество электроэнергии на 1Ки, являясь при этом самым мощным циклотроном на рынке.

300_{MKA} Максимальная мощность Cyclone® KIUBE

Высокопроизводительный

Система Cyclone® KIUBE обеспечит непревзойденную производственную мощность для ПЭТ циклотронов с внутренним

За 2-х часовой цикл с двумя пучками можно получить до 30Ки 18Г, и, соответственно, невероятно большую партию ФДГ, синтезируемого на модулях Synthera®.

Максимально надежный

Его уникальный двойной протонный источник максимально надежен, так как переключение на второй источник в процессе работы оборудования происходит просто, быстро и в автоматическом режиме, обеспечивая 99% непрерывной эксплуатации источников. Более того, процесс производства может быть оптимизирован в реальном времени благодаря автоматической настройке ионного источника, обдирочных фольг и магнитного поля.

DEICOUAŬIIIA O ODOMODO OMTE OLUOCTE

высочаишая производительность						
мкА	Активность 18F / цикл	Дозы ФДГ/цикл (*)				
Cyclone® KIUBE 100	2 часа : 10 Ки / 370 ГБк	60 - 100				
Cyclone® KIUBE 150	2 часа : 16 Ки / 592 ГБк	96 - 160				
Cyclone® KIUBE 180	2 часа : 20 Ки / 740 ГБк	120 - 200				
Cyclone® KIUBE 300	2 часа : 30 Ки / 1110 ГБк	180 - 300				

(*) при использовании модуля синтеза Synthera® для получения ФДГ (срок годности – стабильные 12 часов)
Может варьироваться в зависимости от условий производства, времени транспортировки и графика лечения

IntegraLab® ONE

Эксперты ІВА разработали проект самого оптимизированного в мире ПЭТ-центра в соответствии с требованиями GMP. Он занимает площадь менее 100м², включая самозащищенный циклотрон мощностью 18МэВ, который обеспечивает наработку 18 Гдля ФДГ и 68Ga с крайне высокой производительностью. IntegraLab® ONE – готовый к эксплуатации интегрированный радиофармацевтический комплекс, который гарантирует быстрое, беспроблемное и надежное создание радиофармацевтического производства в соответствии с требованиями GMP.

IntegraLab® PLUS

IntegraLab® PLUS – это комплексное решение, учитывающее все ваши потребности и сочетающее поставку оборудования и услуги для организации центра производства радиофармпрепаратов, отвечающего нормам надлежащей производственной практики (GMP). Мы применяем системный подход к реализации вашего проекта на всех этапах, от проектирования строительства до процесса производства радиофармпрепаратов в полном соответствии с нормативными требованиями, а также подбираем, интегрируем, устанавливаем и проверяем оборудование, предназначенное для производства радиоизотопов.

ЦИКЛОТРОН С СИСТЕМОЙ САМОКОНТРОЛЯ, УВЕЛИЧИВАЮЩИЙ ВРЕМЯ БЕСПЕРЕБОЙНОЙ РАБОТЫ

Cyclone® KIUBE не имеет себе равных в надежности. Его компактный дизайн включает в себя резервные системы для всех главных частей циклотрона (ионный источник, обдирочные фольги, мишени, вакуумные насосы и т.д.). Программа самотестирования до начала производства и автоматической проверки после обслуживания позволяет обеспечить максимальный срок безотказной работы оборудования.

Долговечный

Система управления Cyclone® KIUBE переведена на несколько языков. Благодаря удобству в использовании, работе на циклотроне Cyclone® KIUBE легко обучить ваш персонал, который сможет чаще меняться друг с другом. Сервисная поддержка, работающая в режиме 24/7, обеспечит вам спокойствие, в то время как эксперты ІВА будут проверять циклотрон, диагностируя и решая 95% проблем удаленно.

Его компактный дизайн позволяет использовать стандартные способы транспортировки, а простота в управлении циклотроном снижает риски для персонала. Кроме того, его можно интегрировать в любой существующий бункер. Cyclone® KIUBE доступен в самозащищенной модификации, в случае если пространство для циклотрона сильно ограничено.

Технология мишеней Nirta®

Полный диапазон мишеней для ваших возросших потребностей

ЖИДКОСТНЫЕ КОНИЧЕСКИЕ МИШЕНИ С 18F

Высокий выход продукта при небольшом потреблении сырья

- _ Эффективная конструкция для достижения выхода продукта в 4 Ки/мл при двухчасовом облучении
- _ Наименьшее потребление обогащенной воды на рынке
- _ Доступен широкий спектр загрузочных объемов: ваши производственные возможности будут всегда соответствовать потребностям
- _ Легкость и низкая дозовая нагрузка при обслуживании: меньше
- запасных частей и расходных метериалов
- _ Простая разборка, сборка и эксплуатация

			¹⁸ F		
	М	Conical 5	Conical 8	Conical 12	Conical 16
Химическая форма			F-		
Ядерная реакция			¹⁸ O(p,n) ¹⁸ F		
Сырье мишени			H ₂ ¹⁸ 0		
Материал фольги			Havar®		
Ниобий			Niobium		
Материал реакционной колбы	0.7 - 1.0	1.8 - 2.0	2.3 - 2.5	2.7 - 3.0	3.5 - 4.3
Время облучения (мин)	60	120	120	120	120
Активность на конец облучения [Ки]/[ГБк]	16/60	5 / 185	8 / 296	12 / 444	16 / 592

Новые конические мишени IBA позволяют увеличить производственные мощности на ежедневной основе, а также уменьшить потребление обогащенной воды. Дизайн был упрощен для облегчения обслуживания.

Менеджер R&D Cyclotron and targetry Амстердам

жидкостные мишени

Уникальная технология для производства Ga-68

Уникальная запатентованная технология (ЕР 15170854) для производства Ga-68 для медицинских целей имеет множество преимуществ:

- Неразрывная автоматизация процесса с использованием платформы
- Отсутствие долгоживущих изотопов Ge-68 (271 день) в конечном продукте
- _ Ежечасное производство в зависимости от расписания пациентов
- _ Простое и экономичное производство в соответствии со стандартами GMP для вашего центра или на продажу, сходное с производством F-18

	⁶⁸ Ga		¹³ N		
Химическая форма	GaCl₃	NH ₃			
Ядерная реакция	⁶⁸ Zn[p,n] ⁶⁸ Ga	¹⁸ O(p,a) ¹³ N			
Сырье мишени	Соль цинка	H ₂ O (дистиллир.) + Этанол 5 ммоль			
Материал фольги	Ожидается выдача патента	Havar®			
Материал реакционной колбы	Ниобий	Ниобий			
Поглотитель энергии	Ожидается выдача патента	Графит			
Энергия пучка	15 M ₃ B	16 МэВ			
Выход продукта (мКи/µА)	11*	38			
Время облучения (мин)	60	20			
Объем реакционной колбы (мл)	3.7	2.3 3.7			
Активность на конец облучения (мКи/ГБк)	120 / 4.5 (возможно увеличение)	400 / 14.4 1000 / 37			

ГАЗОВЫЕ МИШЕНИ

	¹⁵ O	¹¹ C-CO ₂	¹¹ C – CH ₄	
Химическая форма	02	CO ₂	CH ₄	
Ядерная реакция	¹⁵ N(p,n) ¹⁵ O	¹⁴ N(p, a) ¹¹ C	¹⁴ N(p, a) ¹¹ C	
Сырье мишени	¹⁵ N ₂ + 0.5-1% 0 ₂	N ₂ + 0.5-1% O ₂	N ₂ + 5% H ₂	
Материал фольги	Алюминий	Алюминий	Алюминий	
Материал реакционной колбы	Алюминий	Алюминий	Алюминий	
Поглотитель энергии (деградер)	Графит	н/д	н/д	
Энергия пучка	13 МэВ	18 M∍B	18 МэВ	
Объём реакционной колбы (мл)	4 – 5/мин	55	40	
Выход продукта (мКи/µА)	30	150	60	
Объем реакционной колбы (мл)	online	30	30	
Активность на конец облучения (мКи/ГБк)	80/3 (/мин при непр. потоке)	4000 / 148	1000 / 37	

Cyclone® KIUBE Tha Максимальные возможности, максимальный потенциал

ТВЕРДОТЕЛЬНЫЕ МИШЕНИ

Технология твердотельных мишеней для производства редких изотопов

- _ Повседневное производство или проведение исследований
- _ Готовые наборы, включающие в себя модули выщелачивания и
- _ Возможность установки с собственной защитой
- _ Пневматическая система транспортировки между бункером циклотрона и радиохимической лабораторией

ПАРАМЕТРЫ ПРОИЗВОДСТВА С ТВЕРДОТЕЛЬНЫМИ МИШЕНЯМИ - ПЭТ/ОФЭКТ ИЗОТОПЫ

Изотоп	64 Cu ⁽¹⁾	⁸⁹ Zr ⁽¹⁾	^{99m} Tc	124 (1)	123 (1)	⁶⁶ Ga	⁶⁷ Ga	¹¹¹ In	86 Y
Период полураспада	12.7ч	784	64	4.18ч	13.27ч	9.49ч	78ч	67ч	14.7ч
Ядерная реакция	⁶⁴ Ni(p,n) ⁶⁴ Cu	⁸⁹ Y(p,n) ⁸⁹ Zr	¹⁰⁰ Mo(p,2n) ^{99mT} c	¹²⁴ Te(p,n) ¹²⁴ I	¹²³ Te(p,n) ¹²³ I	⁶⁶ Zn(p,n) ⁶⁶ Ga	⁶⁷ Zn(p,n) ⁶⁷ Ga	¹¹¹ Cd(p,n) ¹¹¹ In	⁸⁶ Sr(p,n) ⁸⁶ Y
Материал мишени	⁶⁴ Ni	89 Y	¹⁰⁰ Mo	¹²⁴ Te	¹²³ Te	⁶⁶ Zn	⁶⁷ Zn	¹¹¹ Cd	⁸⁶ Sr
Энергия (на мишень) (МэВ)	14	15	18	15	16	16	16	16	18
Выход продукта (мКи/µА*ч)	1.34 ^[3]	0.6	95 ^[4]	0.45	4	~	~	~	~

¹⁾ доступный коммерческий набор 2) в зависимости от толщины материала

Технические характеристики

	CYCLONE® KIUBE 100	CYCLONE® KIUBE 150	CYCLONE® KIUBE 180	CYCLONE® KIUBE 300			
Высокопроизводительный протонны	й пучок						
Энергия	18 МэВ						
Ток пучка	100 μΑ	150 μΑ 180 μΑ 300 μ					
Возможности подключения мишеней	i						
Кол-во мишенных портов		:	8				
Кол-во одновременно облучаемых мишеней	2						
Линия транспортировки пучка Vectio®	1 или 4.5 м						
Низкое потребление энергии							
Режим ожидания	< 3 κBτ						
Режим облучения	< 45 кВт	< 55 κBτ < 60 κBτ		< 65 кВт			
Компактный дизайн							
Вес циклотрона	18 тонн						
Размеры циклотрона	1.9 x 1.9 x 1.8						
Размеры помещения для циклотрона	1		3.8 x 3.8 x 2.5				
Размеры помещения для циклотрона	а с самозащитой	6 x 7 x 3					
Размеры самозащиты		5.2 x 4.3 x 2.45					

Cyclone® KIUBE 16a Максимальные возможности, максимальный потенциал

^{3) 0,0073} мКи/µА*ч/мг Ni-64

⁴⁾ ожидаемый выход продукта

О КОМПАНИИ ІВА

Компания IBA (Ion Beam Applications S.A., Бельгия) производит высокотехнологичное оборудование для диагностики и лечения рака и является мировым лидером в области протонной терапии. Развивая этот ультрасовременный метод лечения онкологии (протонную терапию) и разрабатывая решения для производства радиофармпрепаратов, компания IBA обеспечивает онкологические центры услугами и оборудованием высшего качества, в том числе предлагая передовое комплексное решение Integral ab®

О НАПРАВЛЕНИИ IBA RADIOPHARMA SOLUTIONS

Опираясь на многолетний опыт, IBA RADIOPHARMA SOLUTIONS оказывает поддержку клиникам и центрам производства радиофармпрепаратов, предоставляя им глобальные решения, покрывающие все стадии от разработки проекта до эксплуатации объекта. В дополнение к разработанным инновационным технологиям и оборудованию, компания IBA приобрела обширный опыт в организации создания центров производства радиофармпрепаратов, соответствующих требованиям GMP.

О РЕШЕНИЯХ INTEGRALAB® И SYNTHERA®

IntegraLab® - это комплексное решение, сочетающее поставку оборудования и услуги для организации центра производства радиофармпрепаратов. Решение включает в себя проект помещения, разработанный в полном соответствии с нормативными требованиями, а также подбор, интеграцию, установку и проверку оборудования, предназначенного для производства радиом зоторов с учетом ваших потребностей.

Synthera® - это многоцелевой автоматизированный модуль синтеза для производства 18F-ФДГ, других соединений, меченых 18F (18FCH, 18FLT, Na18F), и различных РФП. Synthera®полойлет широкому кругу радиохимических лабораторий.

КОНТАКТЫ:

Представительство IBA в России и СНГ 119435, Россия г.Москва, Саввинская набережная, дом 15 Тел.: +7 495 648 69 00 info-russia@iba-group.com

Посетите наш вебсайт:

